MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

I B. Tech– I Sem (MR20-2020-21 Admitted Students) I Mid Examination Subjective Question Bank

Name of the Subject: Applied Physics Branches: ECE / EEE

Bloom's **Ouestions O**. Taxonomy CO No. Level **Module I** Summarize the constraints of Wien's radiation law and Rayleigh-Jeans 1. Understanding 1 law in explaining black body radiation spectrum. Relate how Plank's hypothesis rectifies this problem. OR 2 Explain in detail, with a neat diagram, G P Thomson experiment to Understanding 1 show that particles behave like waves. Derive an expression for the wavelength of matter wave associated 3. Applying 1 with a particle of mass 'm' moving with a velocity 'v' in terms of Energy and Potential. If the momentum of two particles is in the ratio 1:0.25, compare their de-Broglie wave lengths. OR Outline the Heisenberg's uncertainty principle and explain why an 4 Applying 1 electron cannot exist inside the nucleus? Analyze how the outcome of Davisson and Germer's experiment 5. Analyzing 1 supported the wave nature of the electron. OR 6. Deduce the Schrodinger's time independent wave equation for a free Analyzing 1 particle of mass 'm' and energy 'E' 7. Solve Schrodinger wave equation of a particle in a one dimensional Applying 1 infinite potential well and obtain the energy eigen values and eigen functions. OR 8. Evaluate the energy required to excite the electron from its ground 1 Applying state to the fifth excited state if an electron trapped inside a one

Code: A0B10

	dimensional infinite potential well of width 0.1 nm. Given that h =		
	6.625×10^{-34} J-sec, m = 9.1×10^{-31} Kg.		
	Module II		
			1
1.	Illustrate the salient features of classical free electron theory and summarize the merits and demerits.	Understanding	2
	OR		
2.	Illustrate the salient features of quantum free electron theory and summarize the merits and demerits.	Understanding	2
3.	Derive the expression for density of energy states.	Applying	2
	OR		
4		A	2
4.	Explain the following: a) Bloch theorem and b) E-K diagram.	Applying	2
5.	Illustrate the salient features of Kronig Penny model of a crystal.	Understanding	2
	OR		
6.	Classify the crystalline solids based on band theory of solids.	Understanding	2
7.	Derive an expression for the effective mass of an electron moving in energy bands of a solid. Show how it varies with the wave vector.	Applying	2
	OR		
8.	Determine the temperature at which there is 1% probability of a state with an energy 0.5 eV above Fermi energy.	Applying	2
	Module III		
1.	Compare intrinsic and extrinsic semiconductors with suitable examples.	Understanding	3
	OR		
2.	Explain the qualitative treatment of Fermi energy level in intrinsic and extrinsic semiconductors.	Understanding	3
2.		Understanding	3
		Understanding Applying	3
	extrinsic semiconductors. Derive an expression for carrier concentration in intrinsic		
3.	extrinsic semiconductors. Derive an expression for carrier concentration in intrinsic semiconductors.		
2. 3. 4.	extrinsic semiconductors. Derive an expression for carrier concentration in intrinsic semiconductors. OR Deduce an expression for carrier concentration in N-type	Applying	3

the concentration of intrinsic charge carriers at 300 K assuming that $m_e^* = m_0$ (rest mass of electron).						
OR						
6	Deduce an expression fo Semiconductors.	r carrier	concentration	in P-type	Applying	3

Signature of the Faculty

Signature of the HOD (Physics)

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) B.TECH I YEAR I Sem (MR20-2020-21) Mid Examination I Objective Question Bank

Subject Name: Applied Physics Subject Code: A0B10	Branches: ECE /]	EEE
1. Quantum theory successfully explains]	1
	Black body radiatio	n
c. Photoelectric effect and Compton Effect d. All	2	
2. Dual nature (particle and wave) of matter was proposed by	[]
a. de Broglie b. Planck c. Einstein	d. Newton	
3. Wavelength associated with the particle of mass m and velocity v is	(Note: h is Planck	c's
constant)	[]
a. hmv b. $\frac{h}{mv}$ c. $\frac{hv}{m}$ d. $\frac{1}{hmv}$		
4. Wavelength of de Broglie's wave associated with an electron when acce	lerated in a potentia	1
difference V is (h is Planck's constant and e is charge of electron)]
	h L	1
a. $\frac{h}{meV}$ b. $\frac{h}{2meV}$ c. $\frac{h}{\sqrt{2meV}}$ d. $\frac{h}{(2meV)}$		
5. When an electron is accelerated in a potential difference V, then the de I	Broglie wavelength	
associated with it in Angstrom is	[]
a. $\frac{1.227}{V}$ b. $\frac{1.227}{\sqrt{V}}$ c. $\frac{12.27}{V}$ d. $\frac{12.27}{\sqrt{V}}$		
6. The difference between Classical Mechanics and Quantum Mechanics is	s [1
a. There is a probabilistic approach	-	-
b. A particle without energy to pass over a potential barrier may sti	ll tunnel through	
c. There is a wave function approach	-	
d. All of these		
7. The existence of matter waves is proposed by	[]
a. Davison and Germer b. G.P. Thomson c. O. Stern	d. All	
8. The wavelength of matter waves associated with an electron moving une	der a potential of 'V	'' is
proportional to	[]
a. \sqrt{V} b. V c. $\frac{1}{\sqrt{V}}$ d. None of the	ese	
9. Velocity of matter waves is	[]
$a.\omega = c/v$ $b.\omega = c^2/v$ $c.\omega = c/v^2$ d. None of these	L	-
10. The target material in Davison and Germer experiment is]]
a. Gold b. Nickel c. Tungsten	d. Copper	-
11. The spurt in the curve drawn between the number of electrons collect		es of
galvanometer with incident beam in Davison and Germer experiment is	more clear for a a	node
voltage of	[]
a. 40V b. 44V c. 54V	d. 68V	
12. The diffraction angle for Nickel crystal in Davison and Germer experim	ment is []
a. 50° b. 65° c. 25° d. 130°		

13. Schrodinger's wave ed	juation for a particle v	vith mass m	and energy E	, moving along	g X-axis	is
					[]
a. $d^2\Psi / dx^2 + (2m)^2$	$/\hbar^2$)(E-V) $\Psi = 0$	b. dΨ /	$dt+2m / \hbar^{2}(E)$	$-V)\Psi = 0$		
c. dy / dx+2m / \hbar^2	$(E-V)\Psi = 0$	d. $d^2 \Psi$	/ dx^2 +2m/ \hbar^2	$(V-E)\Psi = 0$		
14. The wave function ' Ψ	associated with a more	ving particle	e		[]
a. Is not an observ	able quantity	b. Doe	s not have dir	ect physical mo	eaning	
c. Is complex quar	ntity	d. All				
15. The solution of partic	e in one dimensional	infinite pote	ntial well pro	blem gives	[]
a. Quantum numb	ers					
b. Discrete values	of energy and zero po	int energy				
c. Wave function	associated with the par	rticle				
d. All						
16. The energy possessed	by a particle of mass	'm' in nth q	uantum state	in a one dimen	sional	
infinite potential well of v	vidth 'L' is				[]
a. $\frac{n^2 h^2}{8mL^2}$	b. $\frac{nh}{8mL^2}$		C. $\frac{n^2 h^2}{8mL}$	$d \frac{nh}{d}$		
OIIIL	Onth		Onth	Onth	r	1
17. In the measurement of h					L]
a. $\Delta E \cdot \Delta t \geq \frac{\pi}{2\pi}$	$b.\Delta E.\Delta t \ge \frac{h}{\pi}$	$c.\Delta E.\Delta$	$\Delta t = \frac{2\pi}{\pi} d. Nc$	ne		
18. From Wien's displace	ment law, the relation	between the	e maximum w	vavelength (λm	ax) and	
the absolute temperature i	S				[]
a. $\lambda max \alpha 1/T$	b. $\lambda max \alpha 1/T^4$	c. λmax	x α T	d. λmax α T	ł	
19. When an electron is a	ccelerated through a p	otential diffe	erence of 100	V, then it is as	sociated	
with a wave of wave leng	th equal to				[]
a. 0.112 nm	b. 0.1227 nm		c. 1.227 nm	d. 12	.27 nm	
20. Who proposed matter	waves but he did not	prove it exp	erimentally		[]
a. Thomson	b. Davison and G	ermer	c. de Broglie	d. Sc	hrodinge	er
21. The original aim of D	avison and Germer ex	periment wa	as to find the_	by a meta	al target.	
					[]
a. Intensity of scat	tered electrons	b. Elec	tron diffraction	on		
c. To find inter-pla	anar spacing		d. None			
22. The de Broglie wavel	ength of electrons obta	ained from I	Davison and C	Germer experin	nent is	
					[]
a. 0.0165nm	b. 0.165nm		c. 1.65nm	d. 16	.5 nm	
23. Schrodinger's wave e	quation was derived b	ased on	idea of	matter waves.	[]
a. de Broglie's	b. Einstein's		c. Thomson'	s d. Ne	ewton's	
24. If ψ (x, y, z, t) represe	nt wave function asso	ciated with a	a moving part	icle then ψ (x,	$y, z, t) ^2$	2
represent					[]
a. Intensity	b. Amplitude		c. Probability	density d. No	one	
25. If E_1 is the ground sta	te energy of a particle.	, then the ind	crease in ener	gy from nth en	ergy lev	el
to next higher level is					[]
a. $(2n+1)E_1$ b. 2	$2n E_1$ c.	(2n-1) E ₁	d. (3n+1) E ₁			

26. The normalized wave function of a particle in a one dimensional infinite potential well of width 'L' is

1

]

a.
$$\frac{2}{L}Sin\frac{n\pi x}{L}$$
 b. $\frac{L}{2}Sin\frac{n\pi x}{L}$ c. $\sqrt{\frac{L}{2}}Sin\frac{n\pi x}{L}$ d. $\sqrt{\frac{2}{L}}Sin\frac{n\pi x}{L}$

27. The most probable position of a particle in one dimensional infinite potential well of width 'L' in the first quantum state is [] a. L/4 b. L/3 c. L/2 d. 2L/3

28. Calculate the de Broglie wavelength of an electron which has been accelerated from rest on application of potential of 400 volts [

a. 0.613A° b. 0.0613A° c. 6.13A° d. None 29. Calculate the wavelength associated with an electron raised to potential of 1600 V [] a. 0.3065A° b. 0.03065A° c. 3.065A° d. None

30. If Δx and Δp are the uncertainties in the position and momentum measurements then, According to Heisenberg's uncertainty principle []

$$a.\Delta x.\Delta p \ge \frac{\hbar}{2}$$
 $b.\Delta x.\Delta p = \frac{\hbar}{2}$ $c.\Delta x.\Delta p \le \frac{\hbar}{2}$ d. None
31. An electron is moving under a potential field of 15 kV. Calculate the wavelength of the

electron waves. ſ] a. 0.1A° b. 0.01 A^o c. 1 A^o d. None 32. For a particle at rest, de Broglie's wavelength is ſ 1 a. Infinite b. Finite c. Constant d. None 33. Rayleigh-Jean's law is able to explain blackbody spectrum only at ſ] a.Shorter wavelengths b.Longer wavelengths c.All wavelengths d.Visible wavelength region 34. Uncertainty principle was proposed by] ſ a. G.P. Thompson b.Davison& Germer d. Planck c. Heisenberg 35. de Broglie waves are waves] a. Sound waves b. E.M. Waves c. Ultrasonic waves d. None 36. Presently accepted physical interpretation to the wave function is given by Γ] a. Schrodinger b. Pauli c. Heisenberg d. Max Born 37. Louis de Broglie proposed the dual nature by comparing matter with ____ ſ]

a. Radiationb. Momentumc. Bothd. None38. The wavelength of de Broglie wave associated with a moving particle is independent of its[]a. Massb. Chargec. Velocityd. Momentum39. In case of particle in one dimensional box, the wave function(Ψ) is equal to zero at a

distance(x)					[]
a. 0	b. 1/3	c. 1/2		d. 2/3		
40. Matter waves are	associated with				[]
a. Moving par	ticle b. Neutral particle	c. Charged pa	rticle	d. Noi	ne	
41. As per the Einstei	n's mass energy equivalence	2			[]
a. $E = m^2 C$	b. $E = mC^2$	c. $E = m^3 C$	d. E =	= mC ³		
42. As per the Planck	's quantum hypothesis				[]
a. $E = hv^2$	b. $E = hv$	c. $E = h^2 v$	d. E =	$= hv^3$		

43. The value of Planck's constant is J-s		1]
a. 1.6×10^{-19} b. 9.1×10^{-31}	c. 6.625×10^{-34}	d. 3×10^{8}	Ţ
44. The value of charge of electron isCoulor	mb	[]
a. 1.6×10^{-19} b. 9.1×10^{-31}	c. 6.625×10^{-34}	d. 3×10^8	
45. The value of mass of electron iskg		[]
a. 1.6×10^{-19} b. 9.1×10^{-31}	c. 6.625×10^{-34}	d. 3×10^{8}	
46. In Davison and Germer's experiment	is used to heat	Tungsten filament	for
producing electrons.		[]
a. Low Tension Battery	b. High Tensic	on Battery	
c. High resistance voltage source	d. AC source		
47. In Davison and Germer's experimentis used to]
a. Low Tension Battery	b. High Tensic	on Battery	
c. High resistance voltage source	d. AC source		-
48. Who among the following first tried to give a ph]
a. Millikan b. Schrödinger	c. Max Born	d. Dirac	
49. Who among the following interpreted that wave	function talks about th	e particle density?	,
	M	L D.]
a. Millikan b. Schrödinger	c. Max Born	d. Dirac	1
50. Which of the following is called Normalization $G(1,1)^2$ where $G(1,1)^2$		1]
a. $\iiint \psi ^2 dV = 0$	b. $\iiint \psi ^2 dV =$		
$c.\iiint \psi ^2 dV < 0$	d. ∭ ψ ² <i>dV</i>		-
51. Resistivity of metals decreases with]
a. Increasing temperature	b. Decreasing	-	
c. Independent of temperature	d. None of the	_	1
52. Density of energy states means	b. Number of e	-1]
a. Number of energy states per unit volume	d. None	electrons	
c. Both A& B	d. None	г	1
53. Kronig-Penny model isa. Approximate modelb. Real model	c. Both a and b	d. None]
54. The velocity of a free electron in a metal is maximum		r]
a. It is presented in the bottom energy levels		l	1
b. It is presented in the top energy levels of a			
c. It is presented in energy level correspondi		on in an allowed ba	nd
d. None			
55. In $E - K$ diagram,		[]
a. Each portion of the curve represents allow	ved band of energies	Ľ	1
b. The curves are horizontal at the top and be	•		
c. The curves are parabolic near the top and		s in opposite directio	ons
d. All			
56. The effective mass of an electron is maximum w	vhen it is	[]
a. In the lower energy levels of an allowed b	and		
b. In the higher energy levels of an allowed l	band		
c. In the energy level corresponding to a point	nt of inflection in a allo	owed band	
d. None			

57. In Kronig-Penney model, as the scattering power of the potential barrier, $P \rightarrow \infty$ then the allowed energy bands] ſ a. Reduce to single energy levels b. Reduce to smaller bands c. Increase to bigger bands d. None 58. In Kronig-Penney model, as the scattering power of the potential barrier, $P \rightarrow 0$ then:] a. All the energies are allowed to the electrons b. All the energies are not allowed to the electrons c. The forbidden band reduces to smaller size d. None 59. In Kronig-Penny model, the width of allowed bands -----and the width of forbidden bands -----with increase of energy [or αa]] ſ a. Increases, decreases b. Increases, increases c. Decreases, decreases d. Decreases, increases 60. The effective mass of a free electron is -----, when it occupies lower energy levels of allowed band of energies: 1 c. Low negative a. Negative b. Positive d. None 61. The effective mass of a free electron is-----, when it occupies higher energy levels of allowed band of energies a. Negative c. Low Positive d. High Positive b. Positive 62. First Brillouin Zone is extended from ſ 1 a. $-\prod/a$ to 0 c. -∏/a to ∏/a d.- \prod/a to $2\prod/a$ b. 0 to ∏/a 63. The cause for electrical resistance of a metal is ſ 1 a. Impurities and crystal defects b. Thermal vibrations c. Electron scattering and non-periodicity of lattice potentials d. All 64. According to the classical free electron theory, the free electrons are treated as] ſ a. Liquid molecules b. Gas molecules c. Solid molecules d. None 65. The energy gap in between the Valence band and conduction band of metal is ſ] a. Overlaps b. Large band gap c. Both a & b d. None 66. An electron, neutron and a proton have the same wavelength. Which particle has greater velocity? ſ 1 a. Neutron b. Proton c. Electron d. All the particles have the same velocity 67. Fermi level is that state at which the probability of electron occupation is _____at any temperature above 0K ſ 1 b. 0 d. None a. 1 c. $\frac{1}{2}$ 68. At T>0K and $E=E_F$ the probability of occupancy of Fermi level is 1 ſ a. 75% b. 50% c. 90% d. 100% 69. According to Fermi-Dirac statistics the probability of an electron occupying an energy level E is given by 1 ſ b. $F(E) = 1 + \exp(\frac{E - E_F}{K_B T})$ a. $F(E) = \frac{1}{1 - \exp(\frac{E - E_F}{K_B T})}$ c. $F(E) = \frac{1}{1 + \exp(\frac{E - E_F}{E - T})}$ d. $F(E) = 1 - \exp(\frac{E - E_F}{K_D T})$

70. Band theory of solids was devel	loped by		[]
a. Drude and Lorentz	b. Sommerfeld	c. Bloch	d. Newton
71. The effective mass of electron,			[]
\hbar^2	-	\hbar^2	L J
$\frac{\pi}{\left\lceil d^2 F \right\rceil}$	$\frac{\hbar}{[4E]}$	$\frac{n}{\lfloor dE \rfloor}$	
$\left \frac{d^2 L}{dK^2} \right $	$\frac{dE}{dK}$	$\left \frac{dL}{dV} \right $	
a. $\lfloor u \Lambda \rfloor$	0	c. $\lfloor a \Lambda \rfloor$	d. None
72. At absolute zero, semiconducto			[]
a. Insulator	b. Conductor	c. Neither a nor b	d. Both a and b
73. According to Bloch, An electro	n in a solid moves in a		
a. Constant potential		b. Negative potential	
c. Periodically varying pote		d. None of the above	
74. Energy band gap value of semic			
a. 0.1-0.5 eV	b. 1.1-1.5 eV	c. 0.6-1.1 eV	d. 2.1-3.5 eV
75. Energy band gap value of insula		$\sim 20 \text{ eV}$	
a. > 10 eV	b. > 6 eV	c. >20 eV	d. >100 eV
76. The particles obeys F-D statistic a. Fermions	b. Bosons	a Dhotong	d. None
77. In F-D statistics energy levels a		c. Photons	
a. Continuous	b. Discrete	c. No energy bands	d. None
78. In F-D statistics particle posses		e. No energy bands	
a. ¹ / ₂ integral spins	b. Integral spins	c. No spins	d. None
79. According to classical free elec	0 1	1	
a. A constant potential	tion dieory, die electro	b. A sinusoidal perio	
c. A square well periodic po	otential	d. None of the above	-
80. The probability of occupancy o			[]
a. 0	b. ½	c. 1	d. None
81. The electron follows			[]
a. Maxwell – Boltzmann sta	itistics	b. Bose-Einstein stat	istics
c. Fermi-Dirac Statistics		d. None of the above	
82. As the temperature increases the	e conductivity of the se	emiconductor	[]
a. Decreases	b. Increases	c. Decrease and incre	ease d. None
83. According to Kronig-Penny mo	del, the electron move	s under a potential which	ch is in the form
			[]
a. An array of square well		b. A train of sinusoid	lal wave
c. A stair case		d. A barrier of consta	ant height
84. The effective mass of the electr			[]
a. Position	b. Velocity	c. Potential	d. Energy
85. The probability of occupancy o			[]
a. 0	b. ½	c. 1	d. None
86. The group velocity of the electr		1177 / 1	
a. $Vg = d^2\omega/dK^2$	b. Vg= $d^2K/d\omega^2$	c. $dK/d\omega$	d. $d\omega/dK$
87. According to experimental obse	ervations, the dependen	ice of electrical conduct	tivity on the
temperature T is a. σ α T	1		
	b.σ α√T	c. σ α 1/(T)	d. σ α 1/(√T)

88. In allowed band, the velocity o	f the electron is zero at		[]
a. Bottom	b. Top	c. Bottom and top	d. None
89. The momentum of the electron	1	······································	[]
a. ħk	ь. ћ	c. ħ/k	d. h/k
90. The density of the states is proj			[]
a. $E^{1/2}$	b. $E^{3/2}$	c. E ^{2/3}	d. E^2
91. Scattering power of the barrier			[]
a. mV_0ba/\hbar^2	b. \hbar^2/mV_0ba	c. mV ₀ ba/ ħ	d. ħ/ mV ₀ ba
92. The barrier strength is defined		c. III v (jou/ II	
a. $V_0 b$	b. V ₀ /b	c. b/V_0 d. No	
93. According to classical free elec			[]
a. Electron moves in consta	•	b. It obeys classical	
c. It follows Maxwell- Bolt	-	d. All the above	laws
94. According to quantum free elec		u. All the above	[]
a. Electron moves in consta	-	b. It obeys quantum	
c. It follows Fermi – Dirac	-	d. All the above	laws
95. Wiedemann- Franz law states t		u. All the above	г 1
a. $K/\sigma T = const.$	b. K/T = const.	c. $1/\sigma T = constant$	d. K/ σ = const.
		c. 1/01 - constant	u. K/0 - const.
96. According to Bloch, which stat		h It share Daga E	
a. Electron moving in perio	-	b. It obeys Bose- Ein	nstein statistics
c. They do not exhibit unce	• • •	d. All the above	r ı
97. The gap between conduction ba	and and valance band is		[]
a. Band gap		b. Energy level	1
c. Fermi energy level		d. Middle energy lev	
98. At T=0 K Fermi energy level in			[]
a. Close to E_C	b. Close to E_V	c. Middle of $E_C \& E_V$	
99. In F-D statistics particles are		1 - 1 - 1 - 1	
a. Individual distinguishabl	e	b. Identical indisting	guishable
c. Identical distinguishable		d. None	
100. In F-D statistics particles obey	y S		
a. Aufbau principle		b. Pauli's exclusion	principle
c. Hund's rule		d. None	
101. In n- type semiconductor maj			[]
a. Electrons	b. holes	c. protons	d. neutrons
102. In p- type semiconductor maj			[]
a. Electrons	b. Holes	c. Protons	d. Neutrons
103. A semiconductor is different f	from conductor, as it has	•• • •	[]
a. Narrow band gap		b. overlapping the v	
c. Does not exist		d. Very far apart fro	m valence band
104. For an intrinsic semiconducto	r		[]
a. The density of electrons	•		
b. The density of electrons	-		
c. The density of electrons	is less than density of he	oles	
d. none of these			

	om an extrinsic semiconductor as ents to the pure semiconducting element ements to the pure semiconducting element	[t]
106. The Fermi level in the intrinsic semicond	uctor	[]
a. lies midway between the valence ba		L	1
b. lies towards the conduction band			
c. lies towards the valence band			
d. does not exist			
107. The Fermi level in the n- type extrinsic set	emiconductor	[]
a. lies midway between the valence ba		L	-
b. lies towards the conduction band			
c. lies towards the valence band			
d. does not exist			
108. The Fermi level in the p- type extrinsic set	emiconductor	[]
a. lies midway between the valence ba	nd and the conduction band		
b. lies towards the conduction band			
c. lies towards the valence band			
d. does not exist			
109. Conductivity of semiconductor increases	with	[]
a. increase in Temperature	b. Decrease in temperature		
c. Constant temperature	d. None		
110. In p- type material minority carrier would	1 be	[]
a. Electrons	b. Holes		
c. Electron hole pair	d. All the above		
111. In n- type semiconductor the minority car	rrier would be	[]
a. Electrons	b. Holes		
c. Electron hole pair	d. All the above		
112. When electron jumps from the valence ba	and to conduction band, a gap is created, th	at gap	is
called as		[]
a.Recombination b. Holes	L. L	ergy ga	р
113. In intrinsic semiconductors, the Fermi en		[]
a. Temperature	b. doping concentration		
c. Both temperature and doping concer		r	-
114. In extrinsic semiconductors, the Fermi er		[]
a. Temperature	b. doping concentration		
c. Both a and b	d. None	г	1
115. Electrical conductivity of semiconductor	-	l]
a. Very small b. Very 116 Since $m * > m *$ in the energy gap with i	C		1
116. Since $m_h^* > m_e^*$ in the energy gap with i a. Just below the middle and lowers slig b. Just below the middle and rises sligh c. Just above the middle and rises sligh d. Just above the middle and lowers sligh	ightly htly htly	l]

117. To prepare an n-type semico	onductor, the element to	be added with Si is		[]		
a. Arsenic	b. Germanium	c. Aluminum	d. Indiu	ım			
118. At moderately low temperatures the density of electrons in the conduction bandof n-type							
semiconductor is				[]		
a. Proportional to the squ	are of the donor concentr	ration					
b. Proportional to the dom	or concentration						
c. Proportional to the squ	are root of the donor con	centration					
d. Inversely Proportional	to the square of the dono	or concentration					
119. In intrinsic semiconductor t	he electron concentratior	n equal to		[]		
a. ion concentration		b. proton concentrat	tion				
c. Hole concentration		d. neutron concentra	ation				
120. The electrical conductivity	of a semiconductor at abs	solute zero of temperat	ure is	[]		
a. Very Small		b. very large					
c. finite		d. Zero					
121. In Intrinsic semiconductor t	he carrier concentration	varies as		[]		
a. 1/T	b. T ^{3/2}	c. $T^{2/3}$	d. T				
122. At 0K, pure silicon is an				[]		
a. superconductor	b. semiconductor	c. Insulator	d. cond	uctor			
123. To prepare a p-type semicor	nductor, the element to b	e added with Ge is		[]		
a. Arsenic	b. Silicon	c. Antimony	d. Alun	ninum	ı		
124. Order of band gap in an insu	ilator is			[]		
a. 10 eV	b. 0 eV	c. 2 eV	d. None	e			
125. Which is pure semiconducto	or among the following			[]		
a. In	b. Ge	c. Rb	d. As				

Signature of the Faculty

Signature of the HOD (Physics)